If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3p^2-40=-19p
We move all terms to the left:
3p^2-40-(-19p)=0
We get rid of parentheses
3p^2+19p-40=0
a = 3; b = 19; c = -40;
Δ = b2-4ac
Δ = 192-4·3·(-40)
Δ = 841
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{841}=29$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-29}{2*3}=\frac{-48}{6} =-8 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+29}{2*3}=\frac{10}{6} =1+2/3 $
| 12x124=128 | | h-17=27 | | 7-b/6=1 | | 3p2-40=-19p | | b+20=34 | | f/14=8 | | 90+45x=60x | | −4=r20–5 | | 11=g-8 | | 3.75x+x=2 | | -0.64x+0.34x=6.3 | | F(-5)=x²-2x-7 | | 19.75x+227=-92.57x+1052 | | 1/3*3x*9=60 | | 1.5x=x-1 | | -b/6=1 | | 3(3u-2)+8(3u-4)=335 | | 6x-5=99 | | 3X4n=21 | | 2x-9=2(x-1)+11 | | m/15=6 | | 5p^2=10p | | 2x+1-14x=-71* | | t-4.5=2.5 | | 4z+-4=2(3z+2) | | x+.8x=207585 | | 10p+15=5p+35 | | 35=f+13 | | 8x+6=3x−14 | | 4.5÷1=s | | |x+1|=2x+1 | | -7(x-10)^2-6=-258 |